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Abstract
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1. Formulation and Discussion of Model Problem

We study the quasilinear system

Vj= ,(1.1)

at + o =g(v), (1.2)

on [0, 1] x [0, cx), where
S := T + fx, T:= a + v. (1.3)

with f a fixed positive constant throughout. We impose the boundary conditions

S(O,t) = 0 and v(1,t) = 0, t > 0, (1.4)

and the initial conditions

v(x,O) =v0 (x), a(x,O) = o0(x), 0< x <; (1.5)

accordingly,
S(x, O) = So(x) := Uo(x) + vo=(X) + fx. (1.6)

The function g : R -- IR is assumed to be smooth, odd, and g( ) > 0, for 6 0.
The initial-boundary value problem (1.1)-(1.5) serves as a simple model for studying

the dynamic behavior of a non-Newtonian fluid in Poiseuille shear flow between parallel
plates located at x = ±1; the flow is driven by a constant pressure gradient f. In this
context, v, the velocity of the fluid in the channel, and T, the shear stress, are connected
through the balance of linear momentum (1.1). The shear stress T is decomposed into
a non-Newtonian contribution o,, evolving in accordance with the differential constitutive
law (1.2), and a viscous contribution v.. The flow is assumed to be symmetric about the
centerline of the channel. Symmetry and compatibility with boundary conditions dictate
the following restrictions on the initial data:

v0(1) = 0, So(0)=0, and uo(0) =0, (1.7)

which, together with Eqs. (1.2)-(1.4), guarantee that CTx
Scopy

o(0, t) = v.(0, t) = 0, (1.8) 4msp- :"T

and symmetry is preserved for all time. For
The system (1.1)-(1.4) admits steady state solutions (-(x),F(x)) satisfying

S := g(V-) + U + fX = 0, a = g(W) (1.9) 3

on the interval (0, 1]. In case the function w(6) := g() + is not monotone, there may be
multiple values of U,(x) that solve Eq. (1.9) for some x's, thus leading to steady velocity
profiles with kinks (see Figs. 1 and 2). Our objective is to study the stability of such 121
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velocity profiles; we also study well-posedness and the convergence of solutions of (1.1)-
(1.5) to steady states as t --+ oo.

Problem (1.1)-(1.5) captures certain key features of a class of viscoelastic models that
have been proposed to explain the occurence of "spurt" phenomena in non-Newtonian
flows. The phenomenon of spurt was apparently first observed by Vinogradov et al. [18]
in the flow of highly elastic and very viscous non-Newtonian fluids through capillaries
or slit dies. It is associated with a sudden increase of the volumetric flow rate occuring
at a critical stress that appears to be independent of the molecular weight. It has been
proposed by Hunter and Slemrod [5] and Malkus, Nohel, and Plohr [8], [9], and [10] that
spurt phenomena may be explained by constitutive laws that lead to a nonmonotone
relation of the total steady shear stress versus the shear strain-rate. In this framework,
the increase of the volumetric flow rate corresponds to jumps in the strain rate when the
driving pressure gradient exceeds a critical value.

W(x) x

00

0 0 v(x)

Fig. 1: w vs. . Fig. 2: Velocity profile with a kink;
w(-3,(x)) = fx.

Interestingly, various three-dimensional differential constitutive laws, when restricted
to one-dimensional shearing motions, produ, - -onmonotone steady shear stress vs. steady
shear strain-rate relations. The simplest suib model leads to the initial-boundary value
problem

Cevt = a + evzz + f

at +-- (Z -+- 1) V, (1.10)

Zt + Z = -av. .

with boundary conditions (1.4) and appropriate initial conditions; the parameters a and
e represent the ratio of Reynolds number to Deborah number and a ratio of viscosities,
respectively. The evolution of a, the polymer contribution to the shear stress, and of Z,
a quantity proportional to the normal stress difference, are governed by the second and
third equations in (1.10), which are a restriction of differential constitutive laws due to

Oldroyd [12] and Johnson and Segalman (6] (see (16] or (81 for a derivation). The steady

-3-



state solutions (-((x), T(x), T(x)) satisfy

=-1 -' Z+1I-2I, (1.11)

and the steady strain-rate T. is determined by solving the equation

-2 + =u-, X. (1.12)

For - < , T( ) is not monotone; its graph has the shape shown in Fig. 1. Malkus, Nohel

and Plohr [8] performed numerical calculations for solutions of (1.10) that reproduce the

experimental results on spurt of Vinogradov et al. [18] qualitatively and quantitatively.
Moreover, motivated by the relative scales of the parameters ce and e in the experiments,
they study an associated system of ordinary differential equations that is obtained through
a "quasidynamic approximation" (setting a = 0) in (1.10). Their analysis of the approxi-
mating system in [9] and [10] predicts spurt as well as latency, shape memory and hysteresis
under cyclic loading.

Here, we test the hypothesis that lack of monotonicity of the steady shear stress
function causes non-Newtonian response, at the level of the paradigm (1.1)-(1.5). We
remark that this problem can be regarded as a formal approximation to (1.10) arising
by fixing Z in (1.102) at its steady state value in (1.11). For simplicity, the function
w() = g( ) + is assumed to have one single loop. The loop forms as the combined
outcome of the non-Newtonian contribution to the steady shear stress associated with g()
and the Newtonian contribution associated with 6. The hypotheses on g(Q) imply that
w( ) is odd and w(€) 0 for # 0. The graph of a representative w( ) for > 0 is shown
in Fig. 1; in the figure, m and M stand for the levels of the bottom and top of the loop,
respectively. Our analysis can be routinedly generalized to cover the case when w( ) has
a finite number of loops, but we do not pursue this direction here.

Steady state solutions for the representative w( ) are constructed as follows: First,
solve w("T(x)) = fx for each given x E [0, 1], where U(x) = -U,(x). This equation admits
a unique solution for 0 < fx < m or fx > M, and three solutions for m < fx < M. Let
U(x), 0 < x < 1, be such a solution. Setting

U(x) = j U(y)dy, "F(x) = g(-U(x)) (1.13)

(U(x),7(x)) satisfy (1.9) and (1.4) and give rise to a steady state. Clearly, if f < m there
is a unique smooth steady state, if m < f < M there is a unique smooth steady velocity
profile and a multitude of profiles with kinks, finally, if f > M all steady velocity profiles
have kinks. An example of a velocity profile with a kink is shown in Fig. 2.

We are interested in studying the dynamics of solutions to (1.1)-(1.5), and in partic-
ular, to determine which of the steady states are stable. We establish that every solution
of (1.1)-(1.5) converges as t --+ oo to a steady state solution (U(x),7(x)). It would be
interesting to identify the region of attraction of the stable steady solutions, however, this
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seems a very complicated task. Listead, we show that steady states (F(x), 7(x)), with a
finite number of jumps in iJ(x) or F(x), and such that

w'(-Ui5(X)) > co > 0, a.e. x E [0, 11 (1.14)

are "asymptotically stable" in a sense that is made precise in Theorem 5.1. Note that
relation (1.14) excludes solutions that take values in the monotone nonincreasing part
of the graph of w(C). The stable solutions axe local minimizers of an associated energy
functional.

The above results are close, in spirit and in technique, to the analysis of Andrews
and Ball [1] and, especially, that of Pego [14] for phase transitions in one-dimensional
viscoelastic materials of rate type. Current work of Novick-Cohen and Pego [11] on spinodal
decomposition involves similar ideas.

The paper is organized as follows: In Sec. 2,-we obtain basic a-priori estimates and
determine invariant regions for an associated ordinary differential equation. In Sec. 3,
we discuss the well-posedness and regularity of solutions of a system incorporating (1.1)-
(1.5), a consequence of which are existence and regularity results for (1.10) and other
popular models for motions of non-Newtonian fluids arising from differential constitutive
laws. In Sec. 4, we study the convergence of classical solutions of (1.1)-(1.5) to steady
states. Finally, in Sec. 5, we state and prove the main result on stability of steady states
by making use of the analysis in Secs. 2 and 4.

2. A Priori Estimates and Invariant Regions

Problem (1.1)-(1.5) is endowed with certain identities that play a crucial role in the
analysis. As a consequence of (1.1) and (1.4), smooth solutions of the system (1.1)-(1.5)
satisfy:

1/2 v2dX + Svdx = 0, (2.1)

and
Tt fo o1

1/2 d j v2dx + j v dx + (St + S)vtdx = 0. (2.2)

Using (1.3) and (1.2), Eq. (2.2) leads to the energy identity

-{1/2 v 2dx + [W(vx) + x f v.]dx} + IV2 + v2tldx = 0 . (2.3)
dt O

The function

W(C) :=] w(4)d = 1/22 + J g(()d( (2.4)

plays the role of a stored energy function, and is not convex. This fact is the main obstacle
in the analysis of stability. Since g(C) > 0, it follows that f' g(()d( > 0 for CE]R, and
W(C) satisfies the lower bound

W(C) +f fxC' 1/4C2 -f 2 , CEIR, 0 < x < 1. (2.5)
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Integrating (2.3), one has the identity

1/2 v'(x, t)dx + J(W(v,(x, t)) + fxv,(x, t))dx + (v2 + vlt)dxds -

2 r J (2.6)

1/2 fV,(xr)dx + (W(v(x,r) + fxv(x,r))dx, 0 < r < t.

As a first consequence, the energy identity (2.6) yields an a priori bound for S as
follows. First observe that (2.5) and (2.6) with r = 0 imply the estimate

jv(X, t)dx + 1/21 2 (X, t)dx + 2 (V2 + v2)dxd(
1 

(2.7)

<2f2 + S,2(x)dx + 2 [W(vo(x)) + fxvo=(x)]dx < C,

where C is a constant depending only on the data. From (1.1) and (1.4) we obtain the
inequality

S 2 (X,t) = [ v,( ,t)] 2 < j 2(X,t)dx, (2.8)

which, together with (2.7), implies

IS(xt)l < C 0 < x < 1, 0<t <0. (2.9)

Control of S enables us to take advantage of the special structure of Eq. (1.2). It is
convenient to introduce the quantity

s := 0' + fx. (2.10)

Then, Eqs. (1.2), (1.3), and (2.10) readily imply

St + 8 + g(S - S) = fX. (2.11)

For a fixed x, Eq. (2.11) may be viewed as an ODE with the forcing term S(x, *). Also,
observe that for a steady state (-,,g), one has 3 = 0, and : = -T is an equilibrium
solution of (2.11) (with S = 0). If S - 0 in (2.11), it is evident that the ODE admits
positively invariant intervals for each fixed x. We claim that this property is preserved in
the presence of a priori control of S. Such control is provided by bounding the L2 -norm
of vt in (2.8) as in (2.9); more delicate bounds are derived in Sec. 5.

To fix ideas, assume that for 0 < t < to

IS(X,t)l < p 0 < x < 1 (2.12)

for some p > 0. For x fixed in [0, 1], we use the notation S(t) := S(x, t) and conveniently
rewrite (2.11) as

st + w(s - S(t)) = f x - S(t). (2.13)
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We state the following lemma on invariant intervals; its proof is obvious.
Lemma 2.1. Let S satisfy the uniform bound (2.12) for 0 < t < to. For x fixed, 0 < x < 1,
assume there exist s-, s+ such that s- < s+ and

w(s_-A)<fx-A , IAI:p (2.14)

w(s+-A)>fx-A , IA1< (2.15)

Then the compact interval [s-, s+] is positively invariant for the ODE (2.13) on the time
interval 0 < t < to.

With the goal of generating ivariant intervals, we study the solution sets of the
inequalities (2.14) and (2.15) as functions of p and x. First observe that, since lir w( ) =

±0, given any x and p one can determine so+ large, positive and so- large, negative such
that if s- < so- and s+ > so+, then s- and s+ satisfy (2.14) and (2.15), respectively.

w( )

f X ---- ---- .... -- - -- - -- . . .. . .. .-- - -- - - -- - - --x--

I j

/ i i 0a i P + P O .OY
I I I

I I I I I , I I
I * I I a I * *

Fig. 3:Invariant Intr Sals.

Tepossibility for more discriminating choices of invariant intervals arises if we restrict

attention to small values of p. For a function wQ ) with a single loop, the most interesting

case arises when f x - p, f x and f x + p each intersects the graph of w( ) at three distinct
points. Referring to Fig. 3, the abscissae of the points of intersection are denoted by

(a-) P, -y-), (ao,Igo, -o) and (a+ PI+,y+), respectively. First examine (2.15). For 0 <

A < p, any s E (ao + p,go) U (yo + p, ) satisfies (2.15), while, for -p < A < 0, any

s+ E (a+, 0+ - p) U (-y+,oo) satisfies (2.15) (here, by convention, any interval that is

not well defined will stand for the empty set). Thus, the solution set of (2.15) contains

an unbounded component J,0 := (-/o + p, oo) nf (-y+, o), as well as a bounded component
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Jb := (co +p, fl0)n(a+, 13+-p). Correspondingly, the solution set of (2.14) also contains two
components I, := (-oo, a-)f n(-oo, a 0 - p) and Ib := (o,yo -p)fl (- +pY-). Choosing
s- E I, and s+ E J. we construct invariant intervals Is_, s+] of the type discussed in
the previous paragraph. More interesting choices occur if one chooses p so small that Ib
and/or Jb are nonempty; one then takes s- E lb and s+ E J., or s. E I. and s+ E Jb (see
Fig. 3).

The above discussion identifies invariant intervals for (2.13) when x is fixed. Of
particular interest to us is to study the persistence and dependence on x of the invariant
intervals as x varies in [0, 1]. In this context p is fixed and (2.12) is assumed to hold.
I., J, Ib and J, are defined as above and depend on x as well as p.

If we choose s_- E nl I. and s+ E n' J, (which are nonempty) then [s_,s+] is
xE[0,1I xE[0,11

an invariant interval for (2.13) valid for all x E [0, 1]. As an application of this remark and
by viitue of the bound (2.9), we conclude that

S(xt) < C, 0 < X < 1, t > 0 (2.16)

which, in turn, using (1.3) and (2.10), implies

Iv'(xt)I < C, 0 < x < 1, t > 0. (2.17)

By contrast, the discriminating invariant intervals degenerate as we approach the top
or bottom of the loop. However, if p is small enough and we avoid the top or bottom of
the loop, the invariant intervals may be chosen of uniform length. In Ser. 5 we use a result
along these lines which we formulate below.

LTet 7(x) ben a piecewise smooth solution of

w(T(X)) = fx (2.18)

defined on [0, 11 and admitting jump discontinuities at a finite number of points xl, ..., x,
in [0, 1]. In addition. suppose that T(x) takes values in the monotone increasing parts of
the curve w( ) and that it avoids jumping at the top or bottom of the loop, i.e.,

w'(-(z)) >_ co > 0, x E [,11 \ {xl,..., ,}, (2.19)

for some constant co. We look for invariant intervals for (2.13) that are of uniform length,
centered around 3(x) at each x. First, consider the case p = 0 in (2.12), i.e. S = 0,
in (2.13). For each fixed x, let Ro(x) be the distance between T(x) and the nearest solution
of the equation w(Q) = fx different from 7(x). Set Ro := info<,<, Ro(x) and observe
that by (2.19), R 0 > 0. Then for any r < R 0 , [5(x) - r, (x) + r] is an invariant interval
for (2.13) with S - 0. For p > 0, a review of the above constructions yields:
Corollary 2.2. Given 7(x) satisfying (2.18) and (2.19), there are positive constants po
and Ro, such that given any p < po there are positive numbers r, (p) and r2 (p) = Ro - r, (p)
with the property: If (2.12) holds on [0, to], then for any r E (ri(p),r2 (p)), the interval
[3(x) - r,3(x) + r] is positively invariant for the ode (2.13) on [0, t0 ] for any x E [0,1] \
{xI, ... ,xn}. The function ri(p) is an increasing function of p, which is of the order of p,
as p--+O.
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3. Existence and Regularity Theory

In this section, we study existence and regularity questions for a coupled system
of partial differential equations that describes one-dimensional shearing motions of non-
Newtonian fluids. This system is appropriate for non-Newtonian fluid models in which the
total stress is decomposed into a Newtonian contribution and a finite number of relaxation
stress components, viewed as internal variables and evolving in accordance with differential
constitutive laws. Some specific models include (1.10) and others that are discussed in the
Appendix.

Let v be a scalar and U = (U 1,..., UN) be a N-vector and consider the system of

partial differential equations
Vt - Sz

Ut H*(U, v., x) , (3.1)

S = v. + G'(U,x) ,

on [0, 1] x [0, oo). In the context of viscoelasticity, v is a scalar velocity and U represents
a vector of relaxation stresses viewed as internal variables. For definiteness, we impose
boundary conditions appropriate for symmetric channel flow (some other boundary condi-
tions may be treated in a similar fashion):

S(0,t) = 0, v(1, t) = 0, t _>0, (3.2)

and initial conditions of the form

v(x, 0) = v,(x) , U(x, 0) - Uo(x), x E [0, 1]. (3.3)

We assume that the scalar function G* E C3 and the vector function H* E C2 with respect

to their arguments for U E IRN, v. E IR, and x E [0, 11. We indicate in the text whenever
different smoothness hypotheses are imposed on the functions G* and H*.

Two parallel existence and regularity theories will be pursued. The first is appropriate
for smooth initial data and yields classical solutions. The second allows discontinuities in

vo0 (x) and in Uo(x) and yields strong solutions. The latter result allows prescription of
discontinuous initial data of the same type as the discontinuous steady states studied in this
paper. Finally, we develop criteria for global existence which apply to the models at hand,
namely, to systems (1.1)-(1.5), (1.10), as well as to some more general models discussed
in the Appendix. We note that existence of classical solutions to the system (3.1)-(3.3)
may also be obtained by using an approach based on the Leray - Schauder fixed point

theorem (cf. Tzavaras (17] for existence results on a related system). Other existence

results for (1.10) were obtained by Guillop6 and Saut [2], and small-data results for some

other models in more than one space dimension in [31.
Our first result establishes local-time existence of classical solutions of (3.1)-(3.3).

Theorem 3.1 (Local classical solutions): Assume that Vo(l) = 0, and that with So(x) =

Vo0 (x) + G*(Uo(x),z), we have S, E H-[0, 1] for some s > 3/2, with So(O) = 0, vo(1) =

So,(1) = 0, and that U0 E C 1 [0, 1 1 N, where HS denotes the usual interpolation space [7].

Then for some T > 0 a unique solution of (3.1)-(3.3) ezists with v E C(0, T), C 2), vt E

-9-



C([O,T), Co), U E Cl([O, TI,(Cl)N). If T is the maximal time of existence, but T is finite,
thcn

limsup[ sup (!v,(x,t) + IU(x,t))] = co. (3.4)
t-.T- zE[0,1]

Proof. It is convenient to study the problem with v replaced by S. After computing St
from (3.1) and substituting for v, = (S - G*), we formally obtain equations of the form

St = S, + G(U,S,x), U, = H(U,S,x) (3.5)

where G and H are C2 functions. S should satisfy the boundary conditions

S(O,t) = O, S'(1,t) = O. (3.6)

We study existence for the degenerate sernilinear reaction-diffusion system in (3.5)

using the standard approach of Henry [4]. We consider (3.5) as an abstract parabolic

equation zt + Az = f(z) on a Banach space X. Here, z = (S, U), the operator A is defined

by A(S,U) = (-S.,,0) and the Banach space X = L 2 [0,1] x C1[0, 1]N . The domain of

the Laplacian -AS = -S.. in L' is

D(-A) = {S I S E H 2 [0, 1] with S(0) = 0, S=(1) =0,

so the domain of A is D(-A) x (C1)N. The Laplacian is a sectorial operator in L 2 , so

A is a sectorial operator on X, and generates an analytic semigroup. For 0 < a < 1, the

domain of the fractional power A' is X' = D((-A)a) x (C1)N. For a > 3/4 this domain

is continuously embedded into C' x (C1)N, where

C= {S EC'[0,1]1 S(O)=0, S,(1)=0}.

The hypotheses on G" and H* imply that the map (S, U) -- (G(U, S, x), H(U, S, x)) is

C' as a map from X' to X. The hypotheses on the initial data imply that initially

z(O) E X' = D(A') for some a > 3/4. The proof of Theorem 3.3.3 of Henry [4] applies,

yielding existence of a unique solution z(t) of the abstract equation satisfying, for this a,
and for all - < 1,

z E C([O, T),X -) nC 1((O, T), X -) nC((O, T), D(A)) •. (3.7)

(See Lemma 3.2.1 and Theorem 3.5.2 in [4] concerning differentiability of the solution. For

an alternative source, see Pazy [13].) Taking components, we find that

S E C([O, T), CI) n C'((O, T), CI) n C((O, T), D(-A)), U E C([O, T), C1 );

the latter follows by taking t to zero in (3.5). Now, recover v from

V(x1t) = [s(y,(t) - G(U(yt),y)ldy.

-10-



It follows that

v E C([O, T), C2 ) nC((O, T), C2), Vt = S, E C([O, T), C) ,

the system (3.1) is satisfied for t > 0, and v(x,0) = vo(x).
To prove the assertion regarding blow-up if global existence fails, we apply Henry's

Theorem 3.3.4 to conclude that if the maximal T is finite, then the X1 - norm of the
solution (S, U) of (3.5) must blow-up as t -+ T-. But then it follows that the sup norm of
(S, U) must blow up, because otherwise, the nonlinear terms f(z) in the abstract equation
satisfy a linear growth estimate If(z)Ilx < K(1 + I1z[[xa), and global existence follows
from Corolla-, 3.3.5 in (4]. Now the assertion in (3.4) follows from the blow-up of the sup
norm of (S, U). 3

Strong "semi-classical" solutions with discontinuous stress components may be ob-
tained by a different choice of function spaces in the proof above. The following local
existence theorem yields solutions of (3.1) in which U and v. may be discontinuous in
x, but S= and vt are continuous, and U is C' as a function of t for every x. Thus all
derivatives in (3.1) may be interpreted in a classical sense as long as the equation is kept
in conservation form. A result of this type was obtained by Pego in [14]; we follow a similar
line of argument. In what follows W 1,' is the space of Lipschitz continuous functions on
[0, 1], and W 2 ', is the space of functions with Lipschitz continuous first derivatives.

Theorem 3.2 (Local strong solutions): Assume that aG*/U and H* are locally Lipschitz

functions. Assume that v0 (1) = 0, and that with So(x) = v0.(x) + G*(Uo(x),x), we have

S, E H'[0, 1] with So(O) = 0, and that U0 E L O[0, 1]N. Then for some T > 0 a unique
solution of (3.5)-(3.6) exists with

S E C([O, T), H') n C((O,T), W 2 ')n C1((0,T),H-) for all s <2,

U E C'([O,T),(L-)N).

Moreover, there exists a unique solution of (3.1)-(3.3) with

v E C([0, T), W1 ' 0- ) n C1 ((O, T), Wl,°°).

If T is maximal but finite, then (3.4) holds. Also, given a bounded representative U0 . of

the equivalence class U0 , there exists T. > 0 and a unique bounded measurable function

U.(x,t), representing U(-,t) for each t, such that t -+ U.(x,t) is C' on [0, T.) for each x,
and, identifying the equivalence class S with its unique continuous representative, (S, U.)
is a strong solution of (3.5).

Proof of Theorem 3.2. The main part of the proof is a slight modification of the proof of

Theorem 3.1. Now, the Banach space X = L2 [0, 1] x L1[0, 1]N . One may show that with

a = 1/2, D((-A)-) = H' n {S I S(0) = 0}, and this space is continuously embedded in

C[O, 1]. One obtains a solution z(t) to the abstract equation with the properties in (3.7)

for a = 1/2, with X' = D((-A)0 ) x L [0, 1] IN. The regularity properties for the solu-

tion follow by taking components and using the equations satisfied by Ut and S... The

assertions regarding blow-up follow as before.
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To establish the existence of the 'classical' solution U., we argue as follows. Identify
the equivalence class S with its unique continuous representative, and for each fixed x,
let U.(x,t) be the unique solution of the ODE dU./dt = H(U.,S,x) with inilal value
U,.(x). Solutions exist on some interval [0,T.), T. < T, with T. indenpendent of x, but
the maximal T. may in principle depend on U,. and on how H depends on x. Considering
Ut = H(U, S, x) as an ODE on (L' )N, it follows from uniqueness that U. agrees with U
for almost all x, for all t E [0, T.). I

In the rest of this paper, U will usually stand for a 'classical' solution U.. We remark
that as a simple corollary of the continuous dependence of solutions of dU./dt = H(U., S, x)
on initial data (or final data), it follows that the solution U. is continuous at (Xo, to) if
and only if U,. is continuous at x0 . In particular, discontinuities in the initial data for
U are preserved. In general, the spatial smoothness of the solution of (3.1)-(3.3) may be
limited. However, so long as G* and H* are smooth, the solution is smooth as a function
of time: The following proposition is a straightforward application of Corollary 3.4.6 in [4].
The hypotheses guarantee that G and H are Ck functions of ($, U), hence the nonlinearity
f(z) in the abstract equation is Cr as a map from X a to X. Henry's Corollary 3.4.6 in [4]
asserts that the mapping t -+ z(t) is C' as a map on (0, T) with values in Xc.
Proposition 3.3 (Temporal regularity): Assume that partial derivatives of G* with respect
to U up to order k + 1 are continuous, and partial derivatives of H* with respect to U and
v, up to order k are continuous.

a) Suppose r = k - 1 > 1. Under the hypotheses of Theorem 3.1, we have

s E Cr((O, T), C6), u E Cr((0, T), (Cl)N), v E Cr((0, T), C2 )

b) Suppose r = k > 1. Under the hypotheses of Theorem 3.2, we have

S E Cr((O,T),Hl), U E Cr((O,T),(L- )N), v E Cr((OT), W',0)

We conclude this section by discussing criteria that imply the global existence of
solutions of (3.1)-(3.3). Under the assumptions of Theorem 3.1 (or Theorem 3.2), the
initial-boundary value problem (3.1)-(3.3) has a unique solution (v(x, t), U(x, t)) on [0, 1] x
[0,7T) for some (maximal) T > 0. In view of (3.4) , if v,(x,t) and U(x,t) are a-priori
bounded on any interval [0, 1] x [0, to], with to > 0, then T = oo and the solution is defined
for all times. In light of (2.16) and (2.17) this is the case for the problem (1.1)-(1.5).
Corollary 3.4. Under the hypotheses stated in the Introduction, the initial-boundary value
problem (1.1)-(1.5) has a unique solution existing globally in time.

For a class of problems describing viscoelastic fluid flows, including (1.11) and others
considered in the Appendix, the function H* in (3.1) has linear growth in v,. For certain
of thes- "odels it can be shown that U satisfies an a prior L" estimate on [0, 1] x [0, to]
for a-.v > 0 (cf. Appendix), and this suffices to guarantee that solutions are globally
defin .
Theorer, .5 (Global Existence). Let the assumptions of Theorem 8.1 (or Theorem 8.2)
be s tisfiei. and let

H*(U, vz,x) = H,(U,z)v, + H 2(U,x). (3.8)
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Let (v(x,t), U(X,t)) be a solution of (3.1)-(3.3) as in Theorem 3.1 (or Theorem 3.2)

defined on [0,11 x [0,T), for some T > 0. If T is the maximal time of existence, but T is

finite, then

limsup[ sup IU(X,t)] = oc. (3.9)
t-.T- xE[0,1]

Proof of Theorem 3.5. Let (v(x,t), U(x,t)) be a solution of (3.1)-(3.3) on [0,1] x [0, T),
with T maximal, and assume that (3.9) is violated; that is, there is a positive constant K 1

such that

IU(x,t)I < K for (X,t) E [0,1] x [0, T). (3.10)

In view of (3.1) and (3.4), it suffices to show that

IS(x,t) 5 K 2  for (x,t) E [0,1] x [0, T), (3.11)

where K 2 is some finite constant.

Indeed, by (3.1) and (3.8), S(x, t) satisfies a linear parabolic equation of the form

St = S_, + a(U, x)S + b(U, x) (3.12)

with boundary conditions (3.6). The functions a and b are determined in terms of G*, H,

and H 2 . We multiply (3.12) by pSIP-2 S ,p > 2, integrate by parts over [0,1] x [0, t], where

t < T, and use (3.9) to arrive at

f 11 to I
j IS(x,t)ldx < ISo(x)ldx + K 3p j (1 + IS( , r)IP)dd,• (3.13)

Integrating (3.13) and taking the 1/p power, yields

j IS(x,t)Pdx) 1/ " < [j ISo(x)lPdx + K 3pT]1/PeK3t;

therefore, letting p -+ oo, we obtain (3.11). 1

-13-



4. Convergence to Equilibria

Let (v(z, t), a(x, t)) be a classical solution of (1.1)-(1.5) defined on [0,11 x [0, oo). The
existence of such solutions was discussed in Section 3. Here, we study the asymptotic
behavior of (v, a) as t -+ oo.

The first lemma indicates that S = a + v. + f x converges to its equilibrium value.

Lemma 4.1. Under the assumptions of Theorem 3.1,

lir S(X,t) = 0, (4.1)

uniformly for x E [0, 11.

Proof. The proof is a consequence of the a priori estimates

100 1 S 2 dxdr < C, (4.2)

o0 0o JIS 2 dxdr < C ,(4.3)

fS'(x,t)dx < C, 0 5<_ oo (44
F 1 (4.3)

where C is a positive constant depending only on data. Once these have been established,

the identity

j S 2 (x, )dx = jt 1j S 2 (x, r)dxdT (4.5)

+ 211 j f S(x,it)St(x,,7)dxdTdr,

together with (4.2) and (4.3), readily yield

im jS 2 (x,t)dx = 0. (4.6)

Then (4.1) follows from (4.4), (4.6) and the inequalityI0 I
S2 (X,t) _2( S2 (X,t) dX) /2( S2 (X, t)dX) 1/ 2 . 47

It remains to prove (4.2)-(4.4). By (1.1), (4.4) is contained in (2.7). Also, (4.3) follows
from (2.8) and (2.7). To prove (4.2), observe that a satisfies the equation

o',, + O, = g'(vz)vzt (4.8)
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whence, one derives the identity

1d j '(x, t) dx + j ,2 ~(Xt)d(4.9)

= g'(v,(x, t))vt(x, t)ot(x, t)dx.

Using (2.7) and (2.17), (4.9) implies

jo fo at dxdt < C. (4.10)

By (1.3),
St = vzt + at. (4.11)

Combining (4.11) with (4.10) and (2.7) we arrive at (4.2). 3
Use of (4.1) enables us to identify the limiting behavior of solutions of (2.11) as t --+ co.

The following result is analogous to Lemma 5.5 in Pego [14].
Lemma 4.2. Let s(x,.) E C'[0, o) be the solution of (2.11), where S(x,e) is continuous
and satisfies (4.1), 0 < x < 1. Then s(x,.) converges to s'(x) as t -+ co and s'(x)
satisfies

s'(x) +g(s(x)) = fx , 0< x <1. (4.12)

Proof. Let x E [0,1] be fixed. Set s(x) = liminf t-.s(x,t) and j(x) = limsupt-. s(x,t).
By virtue of (2.16), -co < s(x) < j(x) < co.

Assume that s(x) < T(x) and choose so E (_(x),3(x)). Then, there are sequences
{t-}, {t + } tending to infinity as n - oo, such that

st(x,t+ ) >_ 0, st(X,t') < 0, s(X,t ) = so (4.13)

and, by (2.11),
.s(X, t ) + SO + g(so - S(x,t )) - f z. (4.14)

Let n --+ co in (4.14) and use (4.13) and (4.1) to conclude

So + g(so) = fx. (4.15)

Thus, if s(x) < :(x) any so E (s(x), (x)) satisfies (4.15). Since the solution set of (4.15)
is not connected, this is impossible. Hence s(x) = 3(x) =: sOO(x).

Next, we claim that s'(x) = limt-..o s(x, t) satisfies (4.12). Indeed, given a fixed
x in [0, 11, there are sequences {t,,} and {rn} ,t, < r,5 tn + 1 and t, - oo, such that
Is(z, rn)I = ls(,t. + 1)-s(x,tn) < 1/n. Evaluating (2.11) at (x,rn) and letting n --- co,
we deduce that s'(x) satisfies (4.12) for any 0 < x < 1. 1

Let (v(z, t), u(x, t)) be a classical solution of (1.1)-(1.5) on [0, 1] x [0, oo). Recalling
the definition of s in (2.10), Lemma 4.2 implies

r'(x) = lim ,(X, t) = s (x) - f X. (4.16)
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Also, combining (1.3), (4.1) and (4.16),

v'(x) := lim v.(x,t) = lim (S(x,t) - s(x,t)) = -s'(x) (4.17)
Xt-00 to0

and
S(x) = v'(x) + a (x) + f x = 0. (4.18)

Finally, noting that by (1.4)

V -r, - vx(xt)dx, (4.19)

vw(x) is Lipschitz continuous and satisfies

I
v'(x) := lir v(x,t)= s ( )d. (4.20)

We conclude that any solution of (1.1)-(1.5) converges to one of the steady states. If
0 < f < m, then there is a unique smooth steady state which is the asymptotic limit of any
solution. However, if m < f, then there are multiple steady states and thus a multitude
of possible asymptotic limits. In Sec. 5, we identify stable steady states.

Observe that in case w( ) is monotone the above arguments yield that every solution
converges to the unique steady state. Moreover, the above results can be routinely gen-
eralized to the case that the function w( ) has multiple loops but the graph of w has no
horizontal segments.

5. Stability of Steady States

The scope of this Section is to study the stability of velocity profiles with kinks. To
fix ideas, let (T(x),y(x)) be a steady state of (1.1)-(1.4) such that !(x) has a finite number
of kinks located at the points x1,..., xn, in (0, 1); accordingly, V.(x) and F(x) have a finite
number of jump discontinuities at the same points. RecaL± that, if we set U(x) = -Ux),

w(U(x)) = fX, x E [0,1], x x 1 ,...,x (5.1)

and F(x) =
Given any smooth initial data (vo(x), oo(x)), there is a unique smooth solution (v(x, t),

a(x,t)) of (1.1)-(1.5). As t --+ 00, (v(x,t),oa(x,t)) converges to one of the steady states,
not a-priori identifiable. We now restrict attention to initial data (vo(x), oo(x)) such that
the values of (vo.(x),ao(x)) are close to (U.(x),7(x)) except on the union U of small
subintervals centered around the points X1,..., x,. U can be thought of as the location of
transition layers separating the smooth branches of the steady state. Roughly speaking,
it turns out that the steady state is "stable" under smooth perturbations that are close in
energy, provided (U(x), 6(x)) takes values in the monotone increasing parts of w(c). More
precisely:
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Theorem 5.1. Let (U(x),-(x)) be a steady state solution as described above and satisfying

w'(U(x)) _> co > 0, x E [0,1], - 3 x 1 ,..., n (5.2)

for some positive constant co. If the measure of Ui is sufficiently small, there is a positive
constant 6o depending on U such that, if 6 < 60, then for any initial data (Vo(x), Oo(X))
satisfying sup ISo(=)l < 6, (5.3)

I v (X1)dX < 62 (5.4)

and

IvoX(x) - U,,(x)1 < 6 , E E [0,11 \U (5.5)
the corresponding solution (v(x, t), a(x, t)) approaches the steady state (U(x), -6(x)) as
t -4 00, in the sense,

, ( X ,t) - V ( ) , (5 .6)
a(x, t) F -(x) , (5.7)

for all x E [0, 1] \ U.
Proof To simplify the exposition, we prove the theorem for the case that -(x) = -j'(x)
has one single jump discontinuity located at xO, m < fxo < M, and for 1 = (xO -- , xO +e)
for some small e. Minor modifications are needed to account for the general case.

The proof is based on exploiting the energy identity (2.6), which, upon setting u(x, t) =

-vX(x, t) yields the inequality

- vt(x,t)dx + j [(W(u(x,t)) - xfu(x,t)) - 1(x)Idx
1 'x (5.8)

x O)dx + [(W(uo(x)) - xfuo(x) - 1(x)]dx.

The function D(x) is associated with the particular choice of U(x), it identifies a basin of
attraction of U(x) and is constructed below.

For each fixed x, the function U(x) occupies the bottom of one of the wells of the
potential W(u) - xfu, in the left well if x < xo and in the right well if x > X0 .
Let

e(x) := W(U(x)) - xfU(x) (5.9)

be the corresponding value of the potential at this x, and let

E:= inf inf (W( )- xf ) > f 2  (5.10)
4ER 0<z<1

be a lower bound of the potential valid for all x E [0, 1]. The function 4(x) is now defined
by

e() if Ix - Xo I (5.11)
17-E iflx- xl< e
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Fig. 4: Graphs of W( ) -xf t , e(x) and (x) for x fixed, x <x 0-e
and fx above the Maxwell line.

Moreover, set

supJCER:W( )-xf e(x) for-oo < <}, x<xo (5.12)
( in{(R: W( )-xf6 >e(x) for(<6<oo}, x >xo

and observe that 6(x) equals +00 or -o in case U(x) is positioned at the lower of the two
wells, while (x) is finite otherwise. The functions W( ) - xf6, e(x) and (x) used in the
construction of P(x) are shown in Fig. 4 for some x fixed, with x < x0 - e and fx above
the Maxwell line.

The following lemma identifies the region of attraction of the steady state solution.
Lemma 5.2. There is a positive constant po such that, given p < po, there are positive func-
tions rm(p) and rM(p), with r,(p) < rM(p) and the property: For any r E (rm (p),rM(p)),

if
sup ISo(x)l < p, (5.13)
O<z<l

1 1 1 2
.6(o):- vt(x,o)d + [W(fo(x))- fuo(x) - ,(x)]dx < (5.14)

and
juo(x) - U(x)l < r - 2p, x E [0,1 1\U, (5.15)

then

sup IS(x,t) <p (5.16)
O<x<1

and
Iu(x,t) -U(x)l < r, x E [0,1] \U, (5.17)
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for any t E [0, oo).
Proof. Let t* = sup(to E R+ :sup0 <.< 1 IS(x,t) l < p for 0 < t < to} be the first time
at which (5.16) is violated. By (5.13), t" > 0. We claim that, if p is sufficiently small,

t* = +oo. Suppose that t* < +oo. Then for any to < t*,

sup IS(X,t)I < p, 0 < t < to, (5.18)
O<z<l

while,

sup IS(X,t*)I = p. (5.19)0<z<l

We now refer to the discussion in Section 2 on invariant intervals of uniform length
for the parametric family of ode'.s (2.11). Set 3(x) = U(x) = -U_(x). Let po,Ro and, for

p < po, let ri(p) and r2 (p) = R0 - ri(p) be as in Corollary 2.2; also recall that r1 (p) - 0
as p -+ 0. Set rm(p) := max{2p, ri(p) + p} and rM(p) := min{Ro,Ro - ri(p) + p}.
Taking po even smaller if needed, it follows that rm(p) < rM(p) _< Ro for all p < po. Fix
r E (rm(p),rM(p)). Then equations (1.6) and (2.10), (5.13) and (5.15) imply

Iso(x) - j(x)l < r - p, x E [0, 1 \U. (5.20)

Moreover, Corollary 2.2, together with (1.3), (2.10) and (5.18), yields

Iu(x, t) - U(x)l _ Is(x, t) - j(x)l + lS(x, t)j < r < Ro, x E [0, 1] \ U. (5.21)

By virtue of the definition of R 0 and (5.12), R 0 < r(x), for all 0 < x < 1,x 3 x0.
Thus, (5.11) and (5.21) guarantee that

W(u(x,t)) - xfu(x,t) >_ '(X), 0 <x < 1,0 <t < to. (5.22)

To conclude the proof, combine (5.8) with (5.22) to obtain

2 [=(X, t) dX < E(o), o < t < t
vtt . (5.23)0

Then (5.23) and (2.8) together imply that

sup IS(x,to)l _< V/Tf(0) (5.24)
o<x<1

for any to < t*. But (5.24) and (5.14) together contradict (5.19). Thus t* = o and (5.16)
holds in [0, oo). Moreover, (5.21) yields (5.17). 1

A remark is appropriate at this point to guarantee that the assumptions (5.13)-(5.15)
are not vacuous but follow from a simpler set of assumptions such as (5.3)-(5.5). Recall

that the constants p0 and R 0 required in Lemma 5.2 depend on U(x), and the form of w( )
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but not on the width c of the layer in the initial data. If 6 < min{p, r-2p}, then (5.3)-(5.5)
imply (5.13) and (5.15). They will also imply (5.14) provided

fo 1 2 (.5

[W(uo(x)) - xf(u0(x)) - 4(x)]dx < 1p 2 (525)

To satisfy (5.25) two things are needed: that 6 be chosen small enough and that e not
exceed a certain value. Moreover, the smaller e is chosen, the larger 6 can be taken.

Lemma 5.2 guarantees that steady states (V, 7) satisfying (5.2) are stable under pertur-
bations that are close to (U, 7) in energy. Actually more is true. It follows from Lemma 4.2
that v,(x, t) -+ v'(x) and a(x, t) --+ ao(x) for a.e. x E [0, 1] as t -- oo. Using (5.17),

Iv,(X,t) -Ui.(x)l = Iu(x,t) - (x)l <r, xE [0,1] \U, (5.26)

and the fact that the only solution of (5.1) in [-(x) -r, (x)+ r], for r < Ro, is U(z) itself,
we conclude that v'(x) = Ux(x) and u (x) = "(z) for x E [0, 1] \ U. *

Appendix

In this appendix, we use the results of Sec. 3 to obtain global existence results for
equations governing motions of incompressible viscoelastic fluids in simple planar shear.
We consider a class of one-dimensional models popular in polymer rheology based on
differential constitutive laws which satisfy the principle of frame indifference; we refer
to [161 for a general formulation.

1. Johnson-Segalman / Oldroyd Models For a class of models with m - relaxation
times, derived from three-dimensional differential constitutive relations due to Johnson

& Segalman [6] (with exponential memory functions) and Oldroyd (12], the equations of
motion take the following form in one space dimension (see [10] for a detailed formulation):

pvt = S.

s = E a + 77-+ fx,cj+x (A.1)

oait + Aij (Zi + PA v.

z,, + ,jzj =- .= 1,...,,,,

where p is the fluid density, v is the fluid velocity, aj represents a contribution to the total

shear stress due to the polymer, 77v. is the Newtonian contribution to the total shear stress,
and Zj represents a contribution to the principal normal stress difference; 77, f, Aj, pyj, aj

are positive constants where -1 < aj < 1; Ai are relaxation rates, p j are elastic shear

moduli, and aj are slip parameters.
The initial-boundary value problem governing Poiseuille shear flow between parallel

plates at x = ±1 with the flow symmetric about the centerline, and driven by a constant
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pressure gradienc consists of the system (A.1) on [0, 1] x [0, oo), coupled with boundary
conditions (1.4), and initial conditions

v(x, 0) = Vo(x), a (X, 0) = auo(x), Z1(x, 0) = Zjo(X), (A.2)

on 0 < x < 1, j 1, ..., m; it is assumed that the compatibility conditions vo(1) =

0, v (0) = 0, and ajoo(0) = 0, j = 1, ... , m, are satisfied. In what follows, we assume
that the initial data satisfy the hypothesis of Theorem 3.5. We note that when 77 = 0,

it is readily shown that (A.1) is hyperbolic if 'L=(Zj + yj) >_ 0, with wave speeds

+} Z=(Zi + i)}1/2 and 0 (repeated m + 1 times).
In the case of a single relaxation time, we omit the subscript j, and we non-dimensiona-

lize the variables by scaling distance by h, time by A-1, and stress by y. Furthermore, if
we replace a, v, and f by & := (1 - a2)1/ 2 o", 0 := (1- a2)1/2v, and f := (1- a2)1/2f,

respectively, then the parameter a disappears from Eqs. (A.1). Since no confusion will arise,
we omit the caret. There are two essential dimensionless parameters: a := ph2 A2 / 1 , a ratio

of Reynolds number to Deborah number, and e := r/A/y, a ratio of viscosities. The special

case of (A.1) with j = 1 leads to the initial-boundary-value problem consisting of the

system (1.10) on [0, 1] x [0, oo), with boundary conditions (1.4) and initial conditions (A.2),

j =1.
To establish a global existence result for the system (A.1), with boundary condi-

tions (1.4) and initial conditions (A.2), we observe that (A.1) is endowed with the identities

t 2 (A.3)

for j = 1, ..., m, and any x e [0, 11. For each j, the right side of (A.3) is strictly negative

in the exterior of the ellipse

2

r, := {(a,, Zj): (1 - a )a2 + (Z, + 2)2 = t'j (A.4)
2 4

Consider the closed sets

fj := {(o'j, Z) :(1 - a + (Z, + s)2 < C2  (A.5)

j = 1,...,m, where Cj > 0 are constants. If Cj > j,,,j = 1, ..., m, the ellipses bounded by

rj are (properly) contained in the sets %j for each j. Letting U := (a,, Zl, ... , a,,, Z,) and

defining f2 := J'l Qj, the above construction implies that if Ci > y.j(j = m1...,m), U E

Ll([0, 1] x [0, T]) for every T > 0, where the a priori bound depends only on the initial

data and not on T. Thus Theorem 3.5 yields that solutions of the initial-boundary value

problem (A.1), (1.4), (A.2) exist globally in time.
Finally, we remark that the same approach can be applied to obtain global-time

existence for shearing flows of non-Newtonian fluids governed by differential constitutive
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relations due to Phan-Thien and Tanner [15] . In the case of one relaxation time, the
relevant system in dimensionless form (compare with (1.10)) is

awt = ax + CvXZ + fI
at + e6za (Z + 1)V, (A.6)

Zt + e6ZZ =-av ,

where a , 6, v, . have the same meaning as in (1.10) and where the constant 6 > 0. To estab-

lish a global existence result for the initial-boundary value problem associated with (A.6),
we use the same approach as for (A.1). For the application of Theorem 3.5, the identity

for (A.6), corresponding to the identity (A.3) with j = 1, now takes the form

a [a 2+ (Z + 1)21 = -2e5Z[a2 + (Z + 1)2 _ 1. (A.7)
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